InfiniTime/src/drivers/St7789.cpp
2024-08-05 20:32:43 +02:00

271 lines
8 KiB
C++

#include <cstring>
#include "drivers/St7789.h"
#include <hal/nrf_gpio.h>
#include <nrfx_log.h>
#include "drivers/Spi.h"
#include "task.h"
using namespace Pinetime::Drivers;
St7789::St7789(Spi& spi, uint8_t pinDataCommand, uint8_t pinReset) : spi {spi}, pinDataCommand {pinDataCommand}, pinReset {pinReset} {
}
void St7789::Init() {
nrf_gpio_cfg_output(pinDataCommand);
nrf_gpio_cfg_output(pinReset);
nrf_gpio_pin_set(pinReset);
HardwareReset();
SoftwareReset();
Command2Enable();
SleepOut();
PixelFormat();
MemoryDataAccessControl();
SetAddrWindow(0, 0, Width, Height);
// P8B Mirrored version does not need display inversion.
#ifndef DRIVER_DISPLAY_MIRROR
DisplayInversionOn();
#endif
NormalModeOn();
SetVdv();
DisplayOn();
}
void St7789::WriteData(uint8_t data) {
WriteData(&data, 1);
}
void St7789::WriteData(const uint8_t* data, size_t size) {
WriteSpi(data, size, [pinDataCommand = pinDataCommand]() {
nrf_gpio_pin_set(pinDataCommand);
});
}
void St7789::WriteCommand(uint8_t data) {
WriteCommand(&data, 1);
}
void St7789::WriteCommand(const uint8_t* data, size_t size) {
WriteSpi(data, size, [pinDataCommand = pinDataCommand]() {
nrf_gpio_pin_clear(pinDataCommand);
});
}
void St7789::WriteSpi(const uint8_t* data, size_t size, const std::function<void()>& preTransactionHook) {
spi.Write(data, size, preTransactionHook);
}
void St7789::SoftwareReset() {
EnsureSleepOutPostDelay();
WriteCommand(static_cast<uint8_t>(Commands::SoftwareReset));
// If sleep in: must wait 120ms before sleep out can sent (see driver datasheet)
// Unconditionally wait as software reset doesn't need to be performant
sleepIn = true;
lastSleepExit = xTaskGetTickCount();
vTaskDelay(pdMS_TO_TICKS(125));
}
void St7789::Command2Enable() {
WriteCommand(static_cast<uint8_t>(Commands::Command2Enable));
constexpr uint8_t args[] = {
0x5a, // Constant
0x69, // Constant
0x02, // Constant
0x01, // Enable
};
WriteData(args, sizeof(args));
}
void St7789::SleepOut() {
if (!sleepIn) {
return;
}
WriteCommand(static_cast<uint8_t>(Commands::SleepOut));
// Wait 5ms for clocks to stabilise
// pdMS rounds down => 6 used here
vTaskDelay(pdMS_TO_TICKS(6));
// Cannot send sleep in or software reset for 120ms
lastSleepExit = xTaskGetTickCount();
sleepIn = false;
}
void St7789::EnsureSleepOutPostDelay() {
TickType_t delta = xTaskGetTickCount() - lastSleepExit;
// Due to timer wraparound, there is a chance of delaying when not necessary
// It is very low (pdMS_TO_TICKS(125)/2^32) and waiting an extra 125ms isn't too bad
if (delta < pdMS_TO_TICKS(125)) {
vTaskDelay(pdMS_TO_TICKS(125) - delta);
}
}
void St7789::SleepIn() {
if (sleepIn) {
return;
}
EnsureSleepOutPostDelay();
WriteCommand(static_cast<uint8_t>(Commands::SleepIn));
// Wait 5ms for clocks to stabilise
// pdMS rounds down => 6 used here
vTaskDelay(pdMS_TO_TICKS(6));
sleepIn = true;
}
void St7789::PixelFormat() {
WriteCommand(static_cast<uint8_t>(Commands::PixelFormat));
// 65K colours, 16-bit per pixel
WriteData(0x55);
}
void St7789::MemoryDataAccessControl() {
WriteCommand(static_cast<uint8_t>(Commands::MemoryDataAccessControl));
#ifdef DRIVER_DISPLAY_MIRROR
// [7] = MY = Page Address Order, 0 = Top to bottom, 1 = Bottom to top
// [6] = MX = Column Address Order, 0 = Left to right, 1 = Right to left
// [5] = MV = Page/Column Order, 0 = Normal mode, 1 = Reverse mode
// [4] = ML = Line Address Order, 0 = LCD refresh from top to bottom, 1 = Bottom to top
// [3] = RGB = RGB/BGR Order, 0 = RGB, 1 = BGR
// [2] = MH = Display Data Latch Order, 0 = LCD refresh from left to right, 1 = Right to left
// [0 .. 1] = Unused
WriteData(0b01000000);
#else
WriteData(0x00);
#endif
}
void St7789::DisplayInversionOn() {
WriteCommand(static_cast<uint8_t>(Commands::DisplayInversionOn));
}
void St7789::NormalModeOn() {
WriteCommand(static_cast<uint8_t>(Commands::NormalModeOn));
}
void St7789::IdleModeOn() {
WriteCommand(static_cast<uint8_t>(Commands::IdleModeOn));
}
void St7789::IdleModeOff() {
WriteCommand(static_cast<uint8_t>(Commands::IdleModeOff));
}
void St7789::FrameRateLow() {
WriteCommand(static_cast<uint8_t>(Commands::FrameRate));
// Enable frame rate control for partial/idle mode, 8x frame divider
// According to the datasheet, these controls should apply only to partial/idle mode
// However they appear to apply to normal mode, so we have to enable/disable
// every time we enter/exit always on
// In testing this divider appears to actually be 16x?
constexpr uint8_t args[] = {
0x13, // Enable frame rate control for partial/idle mode, 8x frame divider
0x1f, // Idle mode frame rate (lowest possible)
0x1f, // Partial mode frame rate (lowest possible, unused)
};
WriteData(args, sizeof(args));
}
void St7789::FrameRateNormal() {
WriteCommand(static_cast<uint8_t>(Commands::FrameRate));
constexpr uint8_t args[] = {
0x00, // Disable frame rate control and divider
0x0f, // Idle mode frame rate (normal)
0x0f, // Partial mode frame rate (normal, unused)
};
WriteData(args, sizeof(args));
}
void St7789::DisplayOn() {
WriteCommand(static_cast<uint8_t>(Commands::DisplayOn));
}
void St7789::SetAddrWindow(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) {
WriteCommand(static_cast<uint8_t>(Commands::ColumnAddressSet));
uint8_t colArgs[] = {
static_cast<uint8_t>(x0 >> 8), // x start MSB
static_cast<uint8_t>(x0), // x start LSB
static_cast<uint8_t>(x1 >> 8), // x end MSB
static_cast<uint8_t>(x1) // x end LSB
};
WriteData(colArgs, sizeof(colArgs));
WriteCommand(static_cast<uint8_t>(Commands::RowAddressSet));
uint8_t rowArgs[] = {
static_cast<uint8_t>(y0 >> 8), // y start MSB
static_cast<uint8_t>(y0), // y start LSB
static_cast<uint8_t>(y1 >> 8), // y end MSB
static_cast<uint8_t>(y1) // y end LSB
};
memcpy(addrWindowArgs, rowArgs, sizeof(rowArgs));
WriteData(addrWindowArgs, sizeof(addrWindowArgs));
}
void St7789::WriteToRam(const uint8_t* data, size_t size) {
WriteCommand(static_cast<uint8_t>(Commands::WriteToRam));
WriteData(data, size);
}
void St7789::SetVdv() {
// By default there is a large step from pixel brightness zero to one.
// After experimenting with VCOMS, VRH and VDV, this was found to produce good results.
WriteCommand(static_cast<uint8_t>(Commands::VdvSet));
WriteData(0x10);
}
void St7789::DisplayOff() {
WriteCommand(static_cast<uint8_t>(Commands::DisplayOff));
}
void St7789::VerticalScrollStartAddress(uint16_t line) {
verticalScrollingStartAddress = line;
WriteCommand(static_cast<uint8_t>(Commands::VerticalScrollStartAddress));
uint8_t args[] = {
static_cast<uint8_t>(line >> 8), // Frame memory line pointer MSB
static_cast<uint8_t>(line) // Frame memory line pointer LSB
};
memcpy(verticalScrollArgs, args, sizeof(args));
WriteData(verticalScrollArgs, sizeof(verticalScrollArgs));
}
void St7789::Uninit() {
}
void St7789::DrawBuffer(uint16_t x, uint16_t y, uint16_t width, uint16_t height, const uint8_t* data, size_t size) {
SetAddrWindow(x, y, x + width - 1, y + height - 1);
WriteToRam(data, size);
}
void St7789::HardwareReset() {
nrf_gpio_pin_clear(pinReset);
vTaskDelay(pdMS_TO_TICKS(1));
nrf_gpio_pin_set(pinReset);
// If hardware reset started while sleep out, reset time may be up to 120ms
// Unconditionally wait as hardware reset doesn't need to be performant
sleepIn = true;
lastSleepExit = xTaskGetTickCount();
vTaskDelay(pdMS_TO_TICKS(125));
}
void St7789::LowPowerOn() {
IdleModeOn();
FrameRateLow();
NRF_LOG_INFO("[LCD] Low power mode");
}
void St7789::LowPowerOff() {
IdleModeOff();
FrameRateNormal();
NRF_LOG_INFO("[LCD] Normal power mode");
}
void St7789::Sleep() {
SleepIn();
nrf_gpio_cfg_default(pinDataCommand);
NRF_LOG_INFO("[LCD] Sleep");
}
void St7789::Wakeup() {
nrf_gpio_cfg_output(pinDataCommand);
SleepOut();
VerticalScrollStartAddress(verticalScrollingStartAddress);
DisplayOn();
NRF_LOG_INFO("[LCD] Wakeup")
}