InfiniTime/src/drivers/SpiMaster.cpp

176 lines
4.9 KiB
C++

#include <hal/nrf_gpio.h>
#include <hal/nrf_spim.h>
#include "SpiMaster.h"
#include <algorithm>
using namespace Pinetime::Drivers;
SpiMaster::SpiMaster(const SpiMaster::SpiModule spi, const SpiMaster::Parameters &params) :
spi{spi}, params{params} {
}
bool SpiMaster::Init() {
/* Configure GPIO pins used for pselsck, pselmosi, pselmiso and pselss for SPI0 */
nrf_gpio_pin_set(params.pinSCK);
nrf_gpio_cfg_output(params.pinSCK);
nrf_gpio_pin_clear(params.pinMOSI);
nrf_gpio_cfg_output(params.pinMOSI);
nrf_gpio_cfg_input(params.pinMISO, NRF_GPIO_PIN_NOPULL);
nrf_gpio_cfg_output(params.pinCSN);
pinCsn = params.pinCSN;
switch(spi) {
case SpiModule::SPI0: spiBaseAddress = NRF_SPIM0; break;
case SpiModule::SPI1: spiBaseAddress = NRF_SPIM1; break;
default: return false;
}
/* Configure pins, frequency and mode */
NRF_SPIM0->PSELSCK = params.pinSCK;
NRF_SPIM0->PSELMOSI = params.pinMOSI;
NRF_SPIM0->PSELMISO = params.pinMISO;
nrf_gpio_pin_set(pinCsn); /* disable Set slave select (inactive high) */
uint32_t frequency;
switch(params.Frequency) {
case Frequencies::Freq8Mhz: frequency = 0x80000000; break;
default: return false;
}
NRF_SPIM0->FREQUENCY = frequency;
uint32_t regConfig = 0;
switch(params.bitOrder) {
case BitOrder::Msb_Lsb: break;
case BitOrder::Lsb_Msb: regConfig = 1;
default: return false;
}
switch(params.mode) {
case Modes::Mode0: break;
case Modes::Mode1: regConfig |= (0x01 << 1); break;
case Modes::Mode2: regConfig |= (0x02 << 1); break;
case Modes::Mode3: regConfig |= (0x03 << 1); break;
default: return false;
}
setup_workaround_for_ftpan_58(NRF_SPIM0, 0, 0);
NRF_SPIM0->CONFIG = regConfig;
NRF_SPIM0->EVENTS_ENDRX = 0;
NRF_SPIM0->EVENTS_ENDTX = 0;
NRF_SPIM0->EVENTS_END = 0;
NRF_SPI0->EVENTS_READY = 0;
NRF_SPI0->ENABLE = (SPI_ENABLE_ENABLE_Enabled << SPI_ENABLE_ENABLE_Pos);
NRF_SPIM0->ENABLE = (SPIM_ENABLE_ENABLE_Enabled << SPIM_ENABLE_ENABLE_Pos);
return true;
}
bool SpiMaster::WriteFast(const uint8_t *data, size_t size) {
auto spi = reinterpret_cast<NRF_SPI_Type*>(spiBaseAddress);
volatile uint32_t dummyread;
if(data == nullptr) return false;
/* enable slave (slave select active low) */
nrf_gpio_pin_clear(pinCsn);
NRF_SPI0->EVENTS_READY = 0;
NRF_SPI0->TXD = (uint32_t)*data++;
while(--size)
{
NRF_SPI0->TXD = (uint32_t)*data++;
/* Wait for the transaction complete or timeout (about 10ms - 20 ms) */
while (NRF_SPI0->EVENTS_READY == 0);
/* clear the event to be ready to receive next messages */
NRF_SPI0->EVENTS_READY = 0;
dummyread = NRF_SPI0->RXD;
}
/* Wait for the transaction complete or timeout (about 10ms - 20 ms) */
while (NRF_SPI0->EVENTS_READY == 0);
dummyread = NRF_SPI0->RXD;
/* disable slave (slave select active low) */
nrf_gpio_pin_set(pinCsn);
return true;
}
void SpiMaster::setup_workaround_for_ftpan_58(NRF_SPIM_Type *spim, uint32_t ppi_channel, uint32_t gpiote_channel) {
// Create an event when SCK toggles.
NRF_GPIOTE->CONFIG[gpiote_channel] = (GPIOTE_CONFIG_MODE_Event << GPIOTE_CONFIG_MODE_Pos) |
(spim->PSEL.SCK << GPIOTE_CONFIG_PSEL_Pos) |
(GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
// Stop the spim instance when SCK toggles.
NRF_PPI->CH[ppi_channel].EEP = (uint32_t) &NRF_GPIOTE->EVENTS_IN[gpiote_channel];
NRF_PPI->CH[ppi_channel].TEP = (uint32_t) &spim->TASKS_STOP;
NRF_PPI->CHENSET = 1U << ppi_channel;
}
bool SpiMaster::Write(const uint8_t *data, size_t size) {
if(data == nullptr) return false;
if(size == 1) {
setup_workaround_for_ftpan_58(NRF_SPIM0, 0,0);
} else {
NRF_GPIOTE->CONFIG[0] = 0;
NRF_PPI->CH[0].EEP = 0;
NRF_PPI->CH[0].TEP = 0;
NRF_PPI->CHENSET = 0;
}
nrf_gpio_pin_clear(pinCsn);
auto spim = reinterpret_cast<NRF_SPIM_Type *>(spiBaseAddress);
while(size > 0) {
auto currentSize = std::min((size_t)255, size);
size -= currentSize;
NRF_SPIM0->TXD.PTR = (uint32_t) data;
NRF_SPIM0->TXD.MAXCNT = currentSize;
NRF_SPIM0->TXD.LIST = 0;
NRF_SPIM0->RXD.PTR = (uint32_t) 0;
NRF_SPIM0->RXD.MAXCNT = 0;
NRF_SPIM0->RXD.LIST = 0;
NRF_SPIM0->EVENTS_END = 0;
NRF_SPIM0->TASKS_START = 1;
while (NRF_SPIM0->EVENTS_END == 0);
}
nrf_gpio_pin_set(pinCsn);
return true;
}
bool SpiMaster::GetStatusEnd() {
return (bool)*(volatile uint32_t *)((uint8_t *)spiBaseAddress + (uint32_t)NRF_SPIM_EVENT_END);
}
bool SpiMaster::GetStatusStarted() {
return (bool)*(volatile uint32_t *)((uint8_t *)spiBaseAddress + (uint32_t)NRF_SPIM_EVENT_STARTED);
}
void SpiMaster::Sleep() {
while(NRF_SPIM0->ENABLE != 0) {
NRF_SPIM0->ENABLE = (SPIM_ENABLE_ENABLE_Disabled << SPIM_ENABLE_ENABLE_Pos);
}
nrf_gpio_cfg_default(params.pinSCK);
nrf_gpio_cfg_default(params.pinMOSI);
nrf_gpio_cfg_default(params.pinMISO);
nrf_gpio_cfg_default(params.pinCSN);
}
void SpiMaster::Wakeup() {
Init();
}